認知複雜度分析架構對TASA-MAT六年級線上測驗試題難度的解釋力
The Framework of Cognitive Complexity Analysis for the 6th Graders Online TASA-MAT
洪碧霞;林素微;林娟如
共同作者:林素微;林娟如
Pi-Hsia Hung
共同作者:林素微;林娟如
Pi-Hsia Hung
所屬期刊: |
第2卷第4期 「測驗與評量」 主編:大學入學考試中心 簡茂發主任 |
---|---|
系統編號: | vol007_04 |
主題: | 測驗與評量 |
出版年份: | 2006 |
作者: | 洪碧霞;林素微;林娟如 |
作者(英文): | Pi-Hsia Hung |
論文名稱: | 認知複雜度分析架構對TASA-MAT六年級線上測驗試題難度的解釋力 |
論文名稱(英文): | The Framework of Cognitive Complexity Analysis for the 6th Graders Online TASA-MAT |
共同作者: | 林素微;林娟如 |
最高學歷: | 博士 |
校院名稱: | 美國明尼蘇達大學 |
系所名稱: | 教育心理系 |
語文別: | 中文 |
論文頁數: | 18 |
中文關鍵字: | 數學評量、試題難度、認知成分、統計資訊、分析架構 |
英文關鍵字: | mathematics assessment, item difficulty parameter, cognitive component, statistic information, analysis framework |
服務單位: | 國立臺南大學測驗統計研究所教授 |
稿件字數: | 10083 |
作者專長: | 測驗與評量 |
投稿日期: | 2006/12/22 |
論文下載: | |
摘要(中文): | 解題所需認知運作複雜程度對試題難度有合理的預測力,而認知的分析與教學因應所採用的描述性語言較為接近。換言之,認知成分的分析可以協助教師將部分的統計資訊轉化為教學設計的參考資源。因此,本文發展一個數學試題認知複雜度分析架構,並針對TASA-MAT六年級線上測驗,逐題進行試題認知成分評定,再以回歸的統計方式,實徵檢驗該認知複雜度分析架構對試題難度的解釋力。2005年與2006年兩份的TASA-MAT線上測驗,共有53題,研究中以步驟數、表徵轉化、關係推衍、情境新穎、和抽象邏輯等六個成分進行試題認知複雜度的評定,再以認知成分需求度為預測變項,採多元迴歸預測試題難度。結果顯示該認知複雜度分析架構對跨數學內容領域試題難度變異的解釋量有27%;如果進一步針對數與計算、統計與機率、或代數等不同數學內容領域進行細部的分析,一到兩項認知成分的預測力可以達五成左右。換言之,依據初步應用結果,本文所提供的認知複雜度分析架構對數學教師的教學與評量設計頗具參考價值。 |
摘要(英文): | Large scale assessment routinely release part of the sample items to communicate the assessment theme. Proportion correct of each release item is also included in the release documentation. To translate the statistic information into teaching practice adjustment, teachers usually need some professional supports. In this study, an analysis framework on item cognitive complexity is proposed and implemented. The 2005 and 2006 on-line tests of the Taiwan Assessment of Student Achievement in Mathematics (TASA-MAT) for the 6th graders were used for the preliminary analysis. A 6 cognitive components coding schema was developed to predict the item difficulty parameters. The results suggest that the framework proposed can predict around 27% of the difficulty variance across five contents. Within some sub-contents, one to two cognitive components can account up for 50% of the difficulty variance. The implications of these results for math teachers are discussed. |
參考文獻: | 李岳勳(2004)。國小電腦化空間感測驗難度來源之成份分析。國立台南師範學院測驗統計研究所碩士論文。 洪碧霞與李建億(2006)。國小學生數學學習潛力動態評量模式的發展與應用:數學學習潛力、工作記憶、與數學表現關係之縱貫探討(3/3)。國科會研究計畫成果報告。NSC94-2521-S-024-001。 洪碧霞、吳裕益、左太政、鄒慧英、林娟如、林素微(2006)。臺灣學生學習成就評量資料庫之建置-2006年國小六年級學生數學成就之現況調查研究期中報告。國立教育研究院籌備處研究報告。未出版。 Briars, D. J., & Larkin, J. H. (1984).An integrated model of skill in solving elementary word problem. Cognition and Instruction, 1(3), 245-296. Cummins, D. D., Kintsch, W., Russer, K., & Weimer, R. (1988). The role of understanding in solving word problems. Cognitive psychology, 20, 405-438. Dean, A. L., & Malik, M. M. (1986).Representing and solving arithmetic word problems: A study of developmental interaction. Cognition and Instruction, 3(3), 211-227. Gagn’e, E. D., Yekovich, C. W., & Yekovich, F. R. (1997) The Cognitive Psychology of School Learning(2nd Ed.) .Allyn & Bacon. Morales,R. V., Shute, V. J., & Pellegrino, J. W. (1985). Developmental difference in understanding and solving simple mathematics word problems. Cognition and Instruction, 2(1), 41-57. Pellegrino, J. W., Chudowsky, N., & Glaser R. (Eds.) (2001). Knowing what students know: The science and design of educational assessment. Center for Education, National Research Council. Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem-solving ability in arithmetic. In H. Ginsberg (Ed.), The development of mathematical thinking (pp. 153-196). New York: Academic Press. |
熱門期刊下載排行