教師運用動態幾何軟體之研究:以科技接受、成長需求與教學優使性為探究因素

Technology Acceptance, Growth Needs, and Pedagogical Usability as Factors Influencing Teachers’ Perceptions about the Use of Geometer’s Sketchpad Software

黃仲楷;鄭章華;張景媛;林俊佑
Chung-Kai Huang;Chang-Hua Chen;Ching-Yuan Chang;Chun-Yu Lin

Doi:10.6925/SCJ.202006_16(2).0004


所屬期刊: 第16卷第2期 主編:國立政治大學師資培育中心教授
陳幼慧
系統編號: vol061_04
主題: 課程與教學
出版年份: 2020
作者: 黃仲楷;鄭章華;張景媛;林俊佑
作者(英文): Chung-Kai Huang;Chang-Hua Chen;Ching-Yuan Chang;Chun-Yu Lin
論文名稱: 教師運用動態幾何軟體之研究:以科技接受、成長需求與教學優使性為探究因素
論文名稱(英文): Technology Acceptance, Growth Needs, and Pedagogical Usability as Factors Influencing Teachers’ Perceptions about the Use of Geometer’s Sketchpad Software
共同作者:
最高學歷:
校院名稱:
系所名稱:
語文別:
論文頁數: 39
中文關鍵字: 動態幾何軟體;教學優使性;科技接受;成長需求
英文關鍵字: geometry sketchpad software, pedagogical usability, technology acceptance, growth needs
服務單位:
稿件字數: 12000
作者專長:
投稿日期: 2019/4/9
論文下載: pdf檔案icon
摘要(中文): 本研究主要探討臺灣中學數學科教師使用動態幾何軟體的影響因素,針對科技接受程度與教學優使性進行評量,除了科技相關的因素考量之外,我們亦將教師的成長需求納入研究架構中。在回顧相關教學設計與優化理論之後,我們使用了問卷填答與一系列的任務活動,測量數學教師對動態幾何軟體的使用回饋。共有124位中學數學科教師填答了科技接受調查問卷,另有24位教師參與了情境與任務導向的優化性測試。根據研究問題與結果,本研究之發現不僅可提供數學教學實務者參考,並且針對強化使用者為中心的設計功能進行建議,亦對教師專業成長需求進行相關探討。
摘要(英文):
參考文獻: Abdullah, A. H., Surif, J., Ibrahim, N. H., Ali, M., & Hamzah, M. H. (2014). The development of MyGSP: An online resource for teaching mathematics based on Geometer’s Sketchpad (GSP). Asian Social Science, 10(22), 227-240. doi:10.5539/ass.v10n22p227
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
Akayuure, P., & Apawu, J. (2015). Examining mathematical task and pedagogical usability of web contents authored by prospective mathematics teachers. International Journal of Research in Education and Science, 1(2), 101-110. doi:10.21890/ijres.69649
Albion, P. R., Tondeur, J., Forkosh-Baruch, A., & Peeraer, J. (2015). Teachers’ professional development for ICT integration: Towards a reciprocal relationship between research and practice. Education and Information Technologies, 20(4), 655-673.
Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2018). Technology acceptance model in M-learning context: A systematic review. Computers & Education, 125, 389-412. doi: 10.10 16/j.compedu.2018.01.003
An, Y. J., & Reigeluth, C. (2011). Creating technology-enhanced, learner-centered classrooms: K–12 teachers’ beliefs, perceptions, barriers, and support needs. Journal of Digital Learning in Teacher Education, 28(2), 54-62. doi: 10.1080/21532974.2011.10784681
Bakar, K. A., Tarmizi, R. A., Ayub, A. F. M., & Yunus, A. S. M. (2009). Effect of utilizing Geometer’s Sketchpad on performance and mathematical thinking of secondary mathematics learners: An initial exploration. International Journal of Education and Information Technologies, 3(1), 20-27.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.
Baylor, A. L., & Ritchie, D. (2002). What factors facilitate teacher skill, teacher morale, and perceived student learning in technology-using classrooms?. Computers & Education, 39(4), 395-414. doi: 10.1016/S0360-1315(02)00075-1
Belbase, S. (2015). A preservice mathematics teacher’s beliefs about teaching mathematics with technology. International Journal of Research in Education and Science, 1(1), 31-44.
Calisir, F., Altin Gumussoy, C., Bayraktaroglu, A. E., & Karaali, D. (2014). Predicting the intention to use a web-based learning system: Perceived content quality, anxiety, perceived system quality, image, and the technology acceptance model. Human Factors and Ergonomics in Manufacturing & Service Industries, 24(5), 515-531. doi: 10.1002/hf m.20548
Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves mathematical achievement: Systematic review and meta-analysis. Journal of Educational Computing Research, 51(3), 311-325. doi:10.2190/EC.51.3.c
Cheng, Y.-H., Chen, J.-C. & Hsu, H.-Y. (2017). Junior high school students conjecture geometric properties in a dynamic geometry software environment. Taiwan Journal of Mathematics Education, 4(1), 1- 34. doi: 10.6278/tjme.20170317.001
Chou, C.-Y., & Lu, L. (2014). Exploring the attitude differentiation on e-Learning systems based on TAM: The strength of growth need as a moderator. Journal of Information Management, 21(1), 83-105.
Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2004). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2(3), 339-352.
Chuang, H.-H., Weng, C.-Y., & Huang, F.-C. (2015). A structure equation model among factors of teachers technology integration practice and their TPCK. Computers & Education, 86, 182-191. doi: 10.1016/j.compedu.2015.03.016
Clark, A. K., & Whetstone, P. (2014). The impact of an online tutoring program on mathematics achievement. The Journal of Educational Research, 107(6), 462-466. doi: 1 0.1080/00220 671.2013.833075
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982
Feille, K. K., Nettles, J. R., & Weinburgh, M. H. (2018). Silhouettes of development: A tool for understanding the needs and growth of science teachers. Journal of Science Teacher Education, 29(1), 30-45. doi: 10.1080/1046560X.2017.1422644
Fishbein, M. & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi: 10.2 307/3151312
Furner, J. M., & Marinas, C. A. (2007). Geometry sketching software for elementary children: Easy as 1, 2, 3. Eurasia Journal of Mathematics, Science & Technology Education, 3(1), 83-91.
Hackman, J. R., & Lawler, E. E. (1971). Employee reactions to job characteristics. Journal of Applied Psychology, 55(3), 259-286. doi: 10.1037/h0031152
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Englewood Cliffs, NJ: Prentice Hall.
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1-2), 5-23.
Hannafin, R. D., Burruss, J. D., & Little, C. (2001). Learning with dynamic geometry programs: Perspectives of teachers and learners. The Journal of Educational Research, 94(3), 132-144. doi: 10.1080/00220670109599911
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives of the learning and teaching of proof. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). Charlotte, NC: Information Age Publishing.
Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192. doi:10.2307/30034955
Holmes, V. L., & Hwang, Y. (2016). Exploring the effects of project-based learning in secondary mathematics education. The Journal of Educational Research, 109(5), 449-463. doi: 10.1080/00220671.2014.979911
Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 52-60. doi: 10.21427/D7CF7R
Hoyles, C., & Noss, R. (1994). Dynamic geometry environments: Whats the point? Mathematics Teacher, 87, 716-717.
Huang, C. K., Hsin, C. O. & Chiu, C. H. (2010). Evaluating CSL/CFL website usability: A user-center approach design. Journal of Educational Multimedia and Hypermedia, 19 (2), 177-210.
Hsu, H. Y., & Edward, A. S. (2014). Cognitive complexity of mathematics instructional tasks in a Taiwanese classroom: An examination of task sources. Journal for Research in Mathematics Education, 45(4), 460-496. doi:10.5951/jresematheduc.45.4.0460
Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55-85.
Joo, Y. J., So, H. J., & Kim, N. H. (2018). Examination of relationships among students self-determination, technology acceptance, satisfaction, and continuance intention to use K-MOOCs. Computers & Education, 122, 260-272. doi: 10.1016/j.compedu.2018.01.003
Joubert, M. (2013). Using digital technologies in mathematics teaching: Developing an understanding of the landscape using three “grand challenge” themes. Educational Studies in Mathematics, 82(3), 341-359.
Jr. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Essex, UK: Pearson Education.
Karaku?, F., & Peker, M. (2015). The effects of dynamic geometry software and physical manipulatives on pre-service primary teachers’ van Hiele levels and spatial abilities. Turkish Journal of Computer and Mathematics Education, 6(3), 338-365. doi:10.16949/t urcomat.31338
Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339-345. doi:10.1016/S0 097-8493(0 3)00028-1
Knapp, A. K., Barrett, J. E., & Moore, C. J. (2016). Prompting teacher geometric reasoning through coaching in a dynamic geometry software context. School Science and Mathematics, 116(6), 326-337. doi:10.1111/ssm.12184
Knuth, E. J., & Elliot, R. (1998). Characterizing students’ understandings of mathematical proofs. Mathematics Teacher, 91(8), 714-717.
Kong, S. C., Chan, T.-W., Huang, R., & Cheah, H. M. (2014). A review of e-learning policy in school education in Singapore, Hong Kong, Taiwan, and Beijing: Implications to future policy planning. Journal of Computers in Education, 1(2-3), 187-212. doi: 10.1007/s4069 2-014-0011-0
Koyuncu, I., Akyuz, D., & Cakiroglu, E. (2015). Investigating plane geometry problem-solving strategies of prospective mathematics teachers in technology and paper-and-pencil environments. International Journal of Science and Mathematics Education, 13(4), 837-862.
Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: An extension of the technology acceptance model. Computers & Education, 61, 193-208. doi: 10.1016/j.compedu.2012.10.001
Lehrer, R., & Chazan, D. (2012). Designing learning environments for developing understanding of geometry and space. Mahwah, NJ: Routledge.
Leikin, R., & Grossman, D. (2013). Teachers modify geometry problems: From proof to investigation. Educational Studies in Mathematics, 82(3), 515-531.doi: 10.1007/s10649-0 12-9460-4
Lennex, L., & Nettleton, K. F. (2012). Cases on inquiry through instructional technology in math and science. Hershey, PA: IGI Global.
Leong, K. E. (2013). Impact of geometers sketchpad on students achievement in graph functions. Malaysian Online Journal of Educational Technology, 1(2), 19-33.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. doi: 10.1037/1082-989X.1.2.130
McLeod, J., Vasinda, S., & Dondlinger, M. J. (2012). Conceptual visibility and virtual dynamics in technology-scaffolded learning environments for conceptual knowledge of mathematics. Journal of Computers in Mathematics and Science Teaching, 31(3), 283-310.
Mertens, D. M. (2014). Research and evaluation in education and psychology: Integrating diversity with quantitative, qualitative, and mixed methods. Thousands Oak, CA: Sage Publications.
Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. Teachers College Record, 108(6), 1017-1054. doi: 10.1111/j.1467-9620.2006.00684.x
Motaghian, H., Hassanzadeh, A., & Moghadam, D. K. (2013). Factors affecting university instructors adoption of web-based learning systems: Case study of Iran. Computers & Education, 61, 158-167. doi: 10.1016/j.compedu.2012.09.016
Mumtaz, S. (2000). Factors affecting teachers use of information and communications technology: A review of the literature. Journal of Information Technology for Teacher Education, 9(3), 319-342. doi:10.1080/14759390000200096
Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of usability problems. Paper presented at the Proceedings of ACM INTERCHI93 Conference, Amsterdam, The Netherlands.
Niess, M. L. (2011). Investigating TPACK: Knowledge growth in teaching with technology. Journal of Educational Computing Research, 44(3), 299-317. doi: 10.2190/EC.44.3.c
Nokelainen, P. (2006). An empirical assessment of pedagogical usability criteria for digital learning material with elementary school students. Journal of Educational Technology & Society, 9(2), 178-197.
Nordin, N., Zakaria, E., Mohamed, N. R. N., & Embi, M. A. (2010). Pedagogical usability of the Geometers Sketchpad (GSP) digital module in the mathematics teaching. The Turkish Online Journal of Educational Technology, 9(4), 113-117.
Okumu?, S., Lewis, L., Wiebe, E., & Hollebrands, K. (2016). Utility and usability as factors influencing teacher decisions about software integration. Educational Technology Research and Development, 64(6), 1227-1249. doi:10.1007/s11423-016-9455-4
Olive, J. (2013). Dynamic and interactive mathematics learning environments: Opportunities and challenges for future research. Mevlana International Journal of Education, 3(3), 8-24. doi: 10.13054/mije.si.2013.02
Olkun, S., Sinoplu, N. B., & Deryakulu, D. (2009). Geometric explorations with dynamic geometry applications based on van Hiele levels. Coleccion Digital Eudoxus, 1(2). Retrieved from http://www.cimm.ucr.ac.cr/ojs/index.php/eudoxus/article/view/97/92
Ottenbreit-Leftwich, A. T., Glazewski, K. D., Newby, T. J., & Ertmer, P. A. (2010). Teacher value beliefs associated with using technology: Addressing professional and student needs. Computers & Education, 55(3), 1321-1335. doi: 10.1016/j.compedu.2010.06.002
Padilla-MeleNdez, A., Del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317. doi: 10.1016/j.compedu.2012.12.014
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. doi: 10.1037/0021-9010.88.5.879
Potter, S. L., & Rockinson?Szapkiw, A. J. (2012). Technology integration for instructional improvement: The impact of professional development. Performance Improvement, 51(2), 22-27. doi: 10.1002/pfi.21246
Ross, J. A., & Bruce, C. D. (2007). Teacher self-assessment: A mechanism for facilitating professional growth. Teaching and Teacher Education, 23(2), 146-159. doi: 10.1016/j.tat e.2006.04.035
Serra, M. (2015). Discovering geometry. Dubuque, IA: Kendall Hunt.
Sheehan, M., & Nillas, L. (2010). Technology integration in secondary mathematics classrooms: Effect on students’ understanding. Journal of Technology Integration in the Classroom, 2(3), 67–83.
Sinclair, N., & Jackiw, N. (2010). Modeling practices with the Geometer’s Sketchpad. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students mathematical modeling competencies (pp. 541-554). New York, NY: Springer.
Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. In A. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 571–596). New York, NY: Springer.
Stols, G. (2007). Designing mathematical-technological activities for teachers using the technology acceptance model. Pythagoras, (65), 10-17. doi: 10.4102/pythagoras.v0i65.86
Teo, T. (2009). Evaluating the intention to use technology among student teachers: A structural equation modeling approach. International Journal of Technology in Teaching and Learning, 5(2), 106-118.
Teo, T., & van Schaik, P. (2012). Understanding the intention to use technology by preservice teachers: An empirical test of competing theoretical models. International Journal of Human-Computer Interaction, 28(3), 178-188. doi: 10.1080/10447318.2011.581892
Teoh, B. T., & Fong, S. F. (2005). The effects of Geometer’s Sketchpad and graphic calculator in the Malaysian mathematics classroom. Malaysian Online Journal of Instructional Technology, 2(2), 82-96.
The International Commission on Mathematical Instruction. (1995). Perspectives on the teaching of geometry for the 21st century. Educational Studies in Mathematics, 28(1), 91-98.
Tso, T.-Y. (2012). The conceptual tool in dynamic geometry system. Secondary Education, 63(4), 6 -15. doi: 10.6249/SE.2012.63.4.01
Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. MIS Quarterly, 37(1), 21-54. doi: 10.25300/MISQ/2013/37.1.02
Wachira, P., & Keengwe, J. (2011). Technology integration barriers: Urban school mathematics teachers perspectives. Journal of Science Education & Technology, 20(1), 17-25. doi: 10.1007/s10956-010-9230-y
Ware, J., & Stein, S. (2014). Teachers’ critical evaluations of dynamic geometry software implementation in 1: 1 classrooms. Computers in the Schools, 31(3), 134-153. doi: 10.108 0/07380569.2014.931779
Watson, D. (1992). Correcting for acquiescent response bias in the absence of a balanced scale. Sociological Methods & Research, 21(1), 52-88. doi:10.1177/0049124192021001003
Wong, K.-T., Osman, R. B., Goh, P. S. C., & Rahmat, M. K. (2013). Understanding student teachers’ behavioural intention to use technology: Technology acceptance model (TAM) validation and testing. International Journal of Instruction, 6(1), 89-104.
Zhang, L., & Jiao, J. (2013). A study on effective hybrid math teaching strategies. International Journal of Innovation and Learning, 13(4), 451-466. doi:10.1504/ijil.2013.054239