論臺灣的「二一」退學制度:政治大學四種制度的量化公平性分析(英文稿)
On Taiwanese Universities’ Two–One Academic Dismissal Policies: A Quantitative Fairness Analysis of the Four Policies of National Chengchi University
何萬順;蔡介文;唐威洋
One-Soon Her;Jie-Wen Tsai;Marc Allassonniere-Tang
Doi:10.6925/SCJ.202212_18(4).0003
One-Soon Her;Jie-Wen Tsai;Marc Allassonniere-Tang
Doi:10.6925/SCJ.202212_18(4).0003
所屬期刊: |
第18卷第4期 主編:國立彰化師範大學教育研究所教授 龔心怡 |
---|---|
系統編號: | vol071_03 |
主題: | 教育政策與制度 |
出版年份: | 2022 |
作者: | 何萬順;蔡介文;唐威洋 |
作者(英文): | One-Soon Her;Jie-Wen Tsai;Marc Allassonniere-Tang |
論文名稱: | 論臺灣的「二一」退學制度:政治大學四種制度的量化公平性分析(英文稿) |
論文名稱(英文): | On Taiwanese Universities’ Two–One Academic Dismissal Policies: A Quantitative Fairness Analysis of the Four Policies of National Chengchi University |
共同作者: | |
最高學歷: | |
校院名稱: | |
系所名稱: | |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵字: | 學業退學;大學教育;學期學分不及格率;量化分析 |
英文關鍵字: | Academic dismissal policy;University education;Semester credit fail rate (S-CFR);Quantitative analysis |
服務單位: | 東海大學外國語文學系講座教授;國立政治大學語言學研究所兼任講座教授;國立政治大學教育學系博士生;法國國家科學研究中心、法國國立自然史博物館及法國巴黎城市大學聯合實驗室(生態人類學)研究員 |
稿件字數: | 11371 |
作者專長: | |
投稿日期: | 2022/6/12 |
論文下載: | |
摘要(中文): | 各國大學體制中學業退學制度經常是一個作為品質把關的機制。臺灣的制度是基於個別學期的學分不及格率(semester credit fail rate, S-CFR),最常用的S-CFR 是50%,俗稱「二一」,即學期學分數達二分之一不及格。雖然各校的實際退學標準存有相當大的差異,但其制度設計的核心都是基於S-CFR 的概念。本研究首先檢視美國、荷蘭與臺灣的學業退學制度的不同,指出臺灣二一制度最重要的特徵是制度的僵化,完全缺乏評估與協商機制。再者,我們透過邏輯辯證顯示,二一制度因為無視於學生的成績平均績點(grade point average, GPA),包含累計GPA(cumulative GPA, C-GPA)與學期GPA(semester GPA, S-GPA),以及累計學分通過率(cumulative credit pass rate, C-CPR),因此極易導致偏頗不公的結果,使得整體成績明顯相對較好的學生反而遭到退學。我們並且透過量化分析,觀察國立政治大學在11 年期間四種制度下的學生資料(N=22,703),驗證了二一制度所導致的不公平現象。本研究顯示現行制度應被重新檢視。 |
摘要(英文): | Academic dismissal policies are used by universities worldwide for quality control purposes. Taiwanese universities base their policies solely on the credit fail rate (CFR) of individual semesters (S-CFR). The most common S-CFR is 50% and is called er-yi (two-one), which indicates half or more of the course credits of a semester were failed. Though actual policies vary among universities, their core designs generally rely on the concept of S-CFR. The present study first compares the dismissal policies among universities in the United States, the Netherlands, and Taiwan to demonstrate how the two–one design lacks consultation and review processes. We then argue that the disregard for cumulative grade point average, semester grade point average, and cumulative credit pass rate may lead to bias because it may lead to students with better overall academic performance being dismissed. We further validate the argument by conducting a quantitative analysis of data on the academic performance of students (N=22,703) from National Chengchi University over 11 years under four different policies. Our findings strongly indicate that the core design common in such policies, i.e., the S-CFR, should be reconsidered. |
參考文獻: | Arnold, I. J. (2015). The effectiveness of academic dismissal policies in Dutch university education: An empirical investigation. Studies in Higher Education, 40(6), 1068-1084. https://doi.org/10.1080/03075079.2013.858684 Atiq, E. H. (2014). Why motives matter: Reframing the crowding out effect of legal incentives. The Yale Law Journal, 123(4), 1070-1116. Chang, T. L. (2015). The higher education policy of the European Union: Taiwan’s perspective.In T. L. Chang (Ed.), The higher education policy of the European Union: Theory and practice (pp. 3-62). Department of European Languages and Cultures, National Chengchi University. Chen, Y. C. (2017). Inspirations from US higher education subsidy policies to resource distribution in Taiwan’s higher education. Taiwan Educational Review Monthly, 6(4), 15-18. Chou, C. P. (2000). Rocks from other mountains: Topics of comparative education research.WIN JOIN. Cornelisz, I., van der Velden, R., de Wolf, I., & van Klaveren, C. (2019). The consequences of academic dismissal for academic success. Studies in Higher Education, 45(11), 2175-2189. https://doi.org/10.1080/03075079.2019.1596076 de Koning, B. B., Loyens, S. M., Rikers, R. M., Smeets, G., & van der Molen, H. T. (2014).Impact of binding study advice on study behavior and pre university education qualification factors in a problem-based psychology bachelor program. Studies in Higher Education,39(5), 835-847. https://doi.org/10.1080/03075079.2012.754857 Ding, C., & He, X. (2004). K-means clustering via principal component analysis. In ICML 04:Proceedings of the twenty-first international conference on Machine learning (pp. 225-232). Association for Computing Machinery. https://doi.org/10.1145/1015330.1015408 Dutch Student Union. (n.d.). Binding study advice (BSA). https://dutchstudentunion.nl/info/education/binding-study-advice/ Erasmus School of History, Culture and Communication. (n.d.). Binding study advice. https:// www.eur.nl/en/eshcc/examination-board/binding-study-advice Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency vs interpretability ofclassifications. Journal of the International Biometric Society, 21, 768-769. Grindle, C. C. (2009). An analysis of court cases involving student due process in dismissal from higher education (Publication No. 3390550) [Doctoral dissertation, University of Alabama]. ProQuest Dissertations Publishing. Haladyna, T., & Hess, R. (1999). An evaluation of conjunctive and compensatory standardsetting strategies for test decisions. Educational Assessment, 6(2), 129-153. https://doi.org/10.1207/S15326977EA0602_03 Hamann, C., & Ibrahim, L. A. (2017). Methods for identifying specific language impairment in bilingual populations in Germany. Frontiers in Communication, 2, Article 16. https://doi.org/10.3389/fcomm.2017.00016 Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm.Applied Statistics, 28(1), 100-108. https://doi.org/10.2307/2346830 Harvard University. (n.d.). 2020-2021 Harvard College handbook for students. https://hwpi.harvard.edu/files/fasro/files/final_harvard_college_handbook_for_students_07.19.2021.pdf?m=1645160316 Her, O. S., & Lin, J. R. (2017). A critical review of the policies of academic dismissal from university. Bulletin of Educational Research, 63(3), 75-106. https://doi.org/10.3966/102 887082017096303003 Her, O. S., Lin, K. H., & Lin, J. R. (2019). Proposing the “Pin”-character criteria of degree requirements based on the constitutional significance of “Universities’ purpose is teaching”: A focus on the Highest Administrative Court Judgment No. 107-Pan-488 on National Chengchi University’s English benchmark for graduation. Educational Policy Forum,22(4), 1-22. https://doi.org/10.3966/156082982019112204001 Her, O. S., Tsai, J. W., Lin, J. R., & Yeh, J. M. (2021). Are universities’ academic dismissal policies reasonable and appropriate: Evidence from an empirical study. Contemporary Educational Research Quarterly, 29(3), 81-119. https://doi.org/10.6151/CERQ.202109_29(3).0003 Hsu, S. C. (2018). Inspirations from US higher education tuition policies to Taiwan. Taiwan Educational Review Monthly, 7(5), 285-296. Jian, L. H. (2021, April 20). No going back! More than 90,000 people dropped out of collegesand universities for two consecutive years, hitting a new high. China Times. https:// www.chinatimes.com/realtimenews/20190402002327-260405?chdtv Jolliffe, I. (2002). Principal component analysis. Springer. Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. https://rpkgs.datanovia.com/factoextra/index.html Keng, S. H. (2016). The effect of a stricter academic dismissal policy on course selection, student effort, and grading leniency. Education Finance and Policy, 11(2), 203-224. https://doi.org/10.1162/EDFP_a_00179 Leiden-Delft-Erasmus Universities. (n.d.). Binding study advice. https://www.lde-studentsuccess.com/research-findings/educational-policy/binding-study-advice Li, I. Y., Wu, C. M., & Chin, C. Y. (2018). A big data analysis of the learning effectiveness and problems of economically disadvantaged students: A case study of Chung Yun Christian University. In Proceeding of the 24th Taiwan Academic Network (TANET) conference 2018 proceeding (pp. 1743-1747). TANET. Lin, Y. H., Wu, C. M., & Chin, C. Y. (2018). Analysis of the status of academic achievement, the reasons for academic dismissal and course-taking strategy: A case study of Chung Yuan Christian University’s institutional research. In Proceeding of the 24th Taiwan Academic Network (TANET) conference 2018 proceeding (pp. 1755-1760). TANET. Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory,28(2), 129-137. https://doi.org/10.1109/TIT.1982.1056489 Maechler, M., Rousseuw, P., Struyf, A., Hubert, M., & Hornik, K. (2019). Cluster: Cluster analysis basics and extensions. R package version, 2.1.0. https://www.scirp.org/(S(oyulxb452alnt1aej1nfow45))/reference/ReferencesPapers.aspx?ReferenceID=2062247 Pica, T. (1983). Adult acquisition of English as a second language under different conditions of exposure. Language Learning, 33(4), 465-497. https://doi.org/10.1111/j.1467-1770.1983.tb00945.x Sneyers, E., & De Witte, K. (2017). The effect of an academic dismissal policy on dropout,graduation rates and student satisfaction. Evidence from the Netherlands. Studies in Higher Education, 42(2), 354-389. https://doi.org/10.1080/03075079.2015.1049143 Stanford Undergrad. (n.d.). Academic progress. https://advising.stanford.edu/current-students/academic-policy/academic-progress Tang, M. (2017). Explaining the acquisition order of classifiers and measure words via their mathematical complexity. Journal of Child Language Acquisition and Development, 5(1),31-52. Tang, Y., Horikoshi, M., & Li, W. X. (2016). Ggfortify: Unified interface to visualize statistical result of popular R packages. The R Journal, 8(2), 478-489. Tao, H. L., Wang, R. H., & Wang, C. W. (2018). An analysis of college students’ course withdrawals and the relationship with academic dismissals and deferrals of graduation. In Proceeding of the 24th Taiwan Academic Network (TANET) conference 2018 (pp. 1731-1736). TANET. Ting, K. M. (2010). Precision and recall. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (p. 781). Springer. https://doi.org/10.1007/978-0-387-30164-8_652 UC Berkeley, College of Letters and Science. (n.d.). Academic probation. https://lsadvising.berkeley.edu/academic-difficulty/academic-probation Universities in the Netherlands. (n.d.). BSA. https://www.universiteitenvannederland.nl/en_GB/bsa Vooijs, M., Van de Ven, & M., Buitendijk, S. (2015). Strengheid werkt; eerste resultaten van het aangescherpt bindend studieadvies in Leiden [Stern ness works. First results of a stricter binding study advice in Leiden]. Thema, 2, 35-38. Wickham, H. (2017). Tidyverse: Easily install and load the Tidyverse. https://CRAN.R project.org/package=tidyverse Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. https://CRAN.R-project.org/package=readxl Wrzesniewski, A., Schwartz, B., Cong, X., Kane, M., Omar, A., & Kolditz, T. (2014). Multiple types of motives don’t multiply the motivation of West Point cadets. Proceedings of the National Academy of Sciences, 111(30), 10990-10995. https://doi.org/10.1073/pnas. 1405298111 Wu, T. Y., & Tao, H. L. (2018). The double a-half academic dismissal policy and student behavior.In Proceeding of the 24th Taiwan Academic Network (TANET) conference 2018 proceeding(pp. 1737-1742). TANET. Xiao, N. (2018). Ggsci: Scientific journal and sci-fi themed color palettes for ggplot2. https://cran.r-project.org/web/packages/ggsci/ggsci.pdf Yang, J. W., Yon, K. J., & Kim, J. K. (2013). An effect of a mandatory counseling program for college students on academic probation: A preliminary study. Asia Pacific Education Review, 14, 549-558. https://doi.org/10.1007/s12564-013-9287-4 Zha, H., He, X., Ding, C., Gu, M., Simon, H., & Gu, M. (2002). Spectral relaxation for k-means clustering. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), NIPS01: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and synthetic (pp. 1057-1064). MIT. |
熱門期刊下載排行