國小學童數學直覺法則之認知評量分析與性別差異探討

Application of Cognitive Assessment on the Usage of Intuitive Rule for Pupils with Comparisons between Genders

林原宏;郭竹晏
Yuan-Horng Lin;Chu-Yen Kuo


所屬期刊: 第6卷第4期 「測驗與評量」
主編:國立臺灣師範大學教育心理與輔導學系
林世華
系統編號: vol023_04
主題: 測驗與評量
出版年份: 2010
作者: 林原宏;郭竹晏
作者(英文): Yuan-Horng Lin;Chu-Yen Kuo
論文名稱: 國小學童數學直覺法則之認知評量分析與性別差異探討
論文名稱(英文): Application of Cognitive Assessment on the Usage of Intuitive Rule for Pupils with Comparisons between Genders
共同作者:
最高學歷:
校院名稱:
系所名稱:
語文別:
論文頁數: 32
中文關鍵字: 直覺法則;混合Rasch模式;認知診斷;潛在類別
英文關鍵字: cognition diagnosis;intuitive rules;latent class;mixed Rasch model
服務單位: 國立臺中教育大學數學教育學系教授;桃園縣桃園市西門國小教師
稿件字數: 15090
作者專長: 數理統計;模糊理論;數學科多元化評量
投稿日期: 2009/10/31
論文下載: pdf檔案icon
摘要(中文): 直覺理論指出學童在數學問題常使用「More A─More B」、「Same
A─Same B」、「無限細分」、「有限細分」等四種直覺法則(intuitive
rule),這些法則會影響學童的數學解題表現。然而,學童使用這四個直覺
法則的相關性和分群的問題,以及不同性別在表現上的差異性,文獻上卻甚
少探討。基於此,本研究以國小五年級學童為對象,探討這四種直覺法則之
相關性,利用多元計分混合Rasch模式(polytomous mixed Rasch model)
進行直覺法則使用之分群,並進行性別表現差異探討。多元計分混合Rasch模
式結果指出,全體學童和不同性別學童都可分成三個潛在類別,每個類別呈
現的直覺法則使用各具特徵。不同性別之直覺法則使用相關性有所不同,但
在各類別的人數分佈上並無差異。本研究結果有助於直覺法則的進階瞭解,
以及提供教師採取同質性分組及補救教學之參考。
摘要(英文): Intuitive theory had generated four intuitive rules about mathematics problems. Hence,intuitive rules played an important role in the mathematics education and mathematical concept construction. Research into this issue improved understanding of mathematical
concept construction. However, most of the research focused on performance of intuitive rules and little was known about the dependence and relationship of these intuitive rules
with comparisons between genders. The purpose of this study was to investigate latent class of rule usage and relationship on intuitive rules for pupils. The sample included fifth graders and polytomous mixed Rasch model was used to classify pupils. According to the
results of data analysis, relationship among four intuitive rules varied. There were three latent classes and each latent class displayed its characteristics on intuitive rule usage.
Relationship of intuitive rule usage between genders varied, but there was no significant difference in distribution of latent class for genders. Finally, results of this study improved understanding of intuitive rules and provide references for teachers on instruction.
參考文獻: 何健誼(2002)。直觀法則對K─6年級學童在體積概念學習上的影響。國立臺北
師範學院數理教育研究所碩士論文。
吳毓瑩、林原宏 (1996)。潛在類別分析取向的除法概念結構。測驗年刊,43,345-358。
呂玉琴、陳瑞發(2004)。直觀規律對國小代課教師數學解題的影響。科學教育
研究與發展季刊,34,66-87。
紀宗秀(2005)。從直觀法則分析學童的迷思概念及概念改變之研究。國立花蓮
師範學院國小科學教育研究所碩士論文。
張玉枝(2002)。探討國二學生詮釋地球科學課本附圖的相關因素。國立臺灣師
範大學科學教育研究所碩士論文。
莊嘉坤 (1995)。國小學生科學態度潛在類別的分析研究。國立屏東師範學院學報,8,111-136。
楊美惠(2002)。直觀規律對k─6年級學童面積概念之探究。國立臺北師範學院
數理教育研究所碩士論文。
蔡秉恆、黃天佑(2005)。直覺法則對兒童數學概念影響之研究。南大學報:數
理與科學類,39(1),91-110。
鄭蕙如(2005)。數學內容知識與數學認知能力之混合Rasch模式分析研究。國立臺灣師範大學教育心理與輔導學系博士論文。
謝展文(2000)。直覺法則對於數學及科學學習的影響─以國小四、五、六年級
學生為對象。國立臺灣師範大學科學教育研究所碩士論文。
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
pp.267-281 in B. N. Petrov and F. Csaki, editors. 2nd International Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary.
Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics, 30, Part A, 9-14.
Austin, E. J., Deary, I. J., & Egan, V. (2006). Individual differences in response scale use: mixed
Rasch modeling of responses to NEO-FFI items. Personality and Individual Differences, 40, 1235-1245.
Bozdogan, H. (1992). Choosing the number of component clusters in the mixture model using a new Informational complexity criterion of the inverse-fisher information matrix. In O. Opitz,B. LAusen and R. Klar (Eds.), Information and classification: Concepts, methods and
applications (pp.44-45), New York, NY: Springer-Verlag.
Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht, Holland: D. Reidel.
Fischbein, E., Tirosh, D., & Melamed, U. (1981). Is it possible to measure the intuitive acceptance of a mathematical statement. Educational Studies in Mathematics, 12, 491-512.
Fischbein, E., Tirosh, P., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 12 , 491-512.
Gunstone, R. F., & White, R. T. (1981). Understanding of gravity. Science Education, 65, 291-299.
Koeller, O. (1994). Identification of guessing behavior on the basis of the mixed Rasch model.(ERIC NO ED369814).
Masters, G. N., & Wright, B. D. (1984). The essential process in a family of measurement models. Psychometrika, 49, 529-544.
Nunez, R. (1991). A 3-Dimension conceptual space of transformations for the study of the intuition of infinity in plane geometry. Proceedings of the Fifteen Conference for the
Psychology of Mathematics Education, 3, 362-368, Assisi, Italy.
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271-282.
Rost, J. (1991). A logistic mixture distribution model for polytomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75-92.
Rost, J., & Langeheine, R. (1997). A guide through latent structure models for categorical data.
In J. Rost and R. Langeheine (Eds), Applications of Latent Trait and Latent Class Models in the Social Sciences (pp. 13- 37). New York, NY: Waxmann Rost, J., Carstensen, C., & von Davier, M. (1998). Applying the mixed Rasch model to personality questionnaires. In J. Rost & R. Langeheine(Eds.), Application of latent trait and latent class models in the social sciences (pp.324-332). Munster Germany: Waxmann.
Schmidt, K. M. (2002). Using the mixed Rasch model to discover latent classes of cognitive self-efficacy. Paper presented at the annual workshop of The Institute for Objective Measurement, New Orleans, LA.
Stavy, R., & Tirosh, D. (1996). Intuitive rules in science and mathematics: The case of "More of A─More of B". International Journal of Science Education, 18, 653-667.
Stavy, R., & Tirosh, D. (2000). How Students Misunderstand Science and Mathematics : Intuitive Rules. New York, NY: Teachers College Press.
Stavy, R., Tirosh, D., Tsamir, P., & Ronen, H. (1996). The Role of Intuitive Rules in Science and Mathematics Education. (Unpublished thesis). School of Education, Tel-Aviv University, Israle.
Tall, D. O. (1981). Intuition of infinity. Mathematics in School, 10(3), 30-33.
Tirosh, D., & Stavy, R. (1999). The intuitive rules theory and inservice teacher education. In F. L. Lin(Ed.), Proceedings of the 1999 International Conference on Mathematics Teacher
Education. (pp.205-225). Taipei, Taiwan: Department of Mathematics, National Taiwan Normal University.
Torff, B., & Sternberg, R. J. (Eds.) (2001). Understanding and teaching the intuitive mind: Student and teacher learning. Mahwah, NJ: Lawrence Erlbaum Associates.
Zazkis, R. (1999). Intuitive rules in number theory: Example of “the more of A, the more of B” rule implementation. Educational Studies in Mathematics, 40, 197-209.