應用成長混合模式剖析臺灣青少年憂鬱發展軌跡的異質性:六步驟策略性模式發展機制研究
Application of Growth Mixture Model to Heterogeneous Trajectories of Depressive Moods of Adolescents: A Six-Step Strategic Model Development Mechanism
王郁琮
Yu-Chung Lawrence Wang
Doi:10.3966/181665042013120904005
Yu-Chung Lawrence Wang
Doi:10.3966/181665042013120904005
所屬期刊: |
第9卷第4期 「測驗與評量」 主編:國立臺灣師範大學教育學系名譽教授 簡茂發 |
---|---|
系統編號: | vol035_05 |
主題: | 測驗與評量 |
出版年份: | 2013 |
作者: | 王郁琮 |
作者(英文): | Yu-Chung Lawrence Wang |
論文名稱: | 應用成長混合模式剖析臺灣青少年憂鬱發展軌跡的異質性:六步驟策略性模式發展機制研究 |
論文名稱(英文): | Application of Growth Mixture Model to Heterogeneous Trajectories of Depressive Moods of Adolescents: A Six-Step Strategic Model Development Mechanism |
共同作者: | |
最高學歷: | |
校院名稱: | |
系所名稱: | |
語文別: | |
論文頁數: | 30 |
中文關鍵字: | 成長混合模式;青少年憂鬱發展軌跡;GMM模式建構 |
英文關鍵字: | growth mixture model;developmental trajectory of depression of adolescence;GMM model development mechanism |
服務單位: | 國立彰化師範大學輔導與諮商學系所副教授 |
稿件字數: | 16864 |
作者專長: | 測驗理論、應用統計與教育評鑑 |
投稿日期: | 2013/7/20 |
論文下載: | |
摘要(中文): | 新興成長混合模式(Growth Mixture Model,簡稱GMM)針對可能存在的潛在異質次群體,進行多元發展軌跡估計,故比起傳統潛在成長曲線模式(Latent Growth Curve Model)基於同質性假設而僅以單一軌跡進行整體成長歷程描述,顯得更加詳盡但模式結構也更複雜。當研究者進行GMM分析卻缺乏一套策略性建構機制時,極易造成過度依賴資料探索,並遭致模式無法收斂的窘境。本研究旨在發展一套步驟明確的GMM標準化建構策略,做為實徵應用分析研究的參考準則;並以臺灣青少年研究從國一至高三所蒐集之六波段憂鬱症狀實徵資料進行示範分析。研究結果顯示,作者所發展的六步驟GMM建構機制,除了兼顧理論驗證與分類實質意義,並可有效地提升模式收斂。實徵資料分析結果發現,臺灣青少年從國一到高三的憂鬱發展軌跡可以分為三種類型,包括:持續低孤獨鬱卒感的「合群快樂型」(82.3%)、先低後高的「晚發憂鬱型」(7.7%)、以及先高轉低的「早發憂鬱型」(9.9%)。GMM是目前少數提供具有統計模式基礎的縱貫軌跡分類,針對如何客觀區分發展軌跡次群體,本文的GMM策略發展機制具重大實用意涵。 |
摘要(英文): | The recently developed Growth Mixture Mode (GMM) provides multiple trajectories to account for the heterogeneity of population, and is therefore more comprehensive than Latent Growth Curve Model (LGCM) that uses a single trajectory to describe development of all subjects, based on its homogeneity assumption. Nonetheless, without a strategic model development mechanism, researchers often encounter convergence problem with GMM, due to model complexity and flexibility. The aim of this study was to fulfill this deficiency by establishing a standardized step-by-step model development procedure. Results from empirical data showed that the six-step procedure improved the likelihood of model convergence significantly. Results from empirical analyses concluded three classes of developmental trajectory of depression among Taiwanese adolescents including stably low depression, named “cheerful” (82.3%); “start low end high”, named “late onset depression”(7.7%); and “start high end low”, named “early onset depression” (9.9%). GMM is a promising method with model-based longitudinal classification, and the mechanism proposed makes a significant contribution to GMM application. |
參考文獻: | 王郁琮(2012)。從異質性分析探討國中生霸凌危機與憂鬱情緒之關係:多層次?歸混合模型。教育與心理研究,35(1),127-153。 王郁琮(印製中)。國中生憂鬱發展軌跡類型之性別差異及與違常行為之關係:成長混合模式分析。中華心理衛生學刊。 王郁琮、溫福星(2011)。混合因素分析對群體異質性之探討:以國中生學業困擾二元資料為例。教育與心理研究,34(3),37-63。 王郁琮、溫福星(2012)。國中生學校學習與家庭關係困擾之群體異質性分析:以IRT Mixture Model。教育心理學報,44(1),185-206。 王郁琮、溫福星(2013)。國中生人際衝突多層次潛在類別Mixture分析。教育與心理研究,36(1),89-116。 伊慶春(2000-2008)。台灣青少年成長歷程研究:國一樣本(J1)第一波至第七波(C00176_4、C00177_2、C00178_2、C00179_3、C00214_3、C00238_3、C00250_1)【原始數據】。取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫https://srda.sinica.edu.tw。 Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychological Methods; Psychological Methods, 8(3), 338-363. Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9(1), 3. Collins, L. M., & Horn, J. L. (1991). Best Methods for the Analysis of Change: Recent Advances, Unanswered Questions, Future Directions. American Psychological Association. Washington, DC. Collins, L. M., & Sayer, A.G. (2001). New Methods for the Analysis of Change. Washington, DC: American Psychological Association. Cudeck, R., & Henly, S. J. (2003). A realistic perspective on pattern representation in growth data: Comment on Bauer and Curran (2003). Psychological Methods, 8, 378-383. Derogatis, L. R. (1983). Symptom Checklist-90-R Administration, Scoring and Procedures Manual II. Towson, MD: Clinical Psychometric Research. Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. Mahwah, NJ: Lawrence Erlbaum Associates. Feldman, B. J., Masyn, K. E., & Conger, R. D. (2009). New approaches to studying problem behaviors: a comparison of methods for modeling longitudinal, categorical adolescent drinking data. Developmental Psychology, 45(3), 652. Gueorguieva, R., Mallinckrodt, C., & Krystal, J. H. (2011). Trajectories of Depression Severity in Clinical Trials of Duloxetine: Insights Into Antidepressant and Placebo Responses. Archives of General Psychiatry, 68(12), 1227. Harris, C. W. (Ed.). (1963). Problem in Measuring Change. Madison, WI: University of Wisconsin Press. Jung, T., & Wickrama, K. A. S. (2007). Recent advances in longitudinal data analysis in social and psychological research: An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302-331. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. Masyn, K. E., Henderson, C. E., & Greenbaum, P. E. (2010). Exploring the Latent Structures of Psychological Constructs in Social Development Using the Dimensional–Categorical Spectrum. Social Development, 19(3), 470-493. McLachlan, G., & Peel, D. (2000). Finite mixture models. New York, NY: John Wiley and Sons. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107-122. Morin, A. J. S., Maiano, C., Nagengast, B., Marsh, H. W., Morizot, J., & Janosz, M. (2011). General growth mixture analysis of adolescents developmental trajectories of anxiety: the impact of untested invariance assumptions on substantive interpretations. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 613-648. Muthen, B. (1991).Analysis of longitudinal data using latent variable models with varing parameters. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 1-17). Washington, DC: American Psychological Association. Muthen, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling. In L. M. Collins & A. G. Sayer (Eds.), New Methods for the Analysis of Change (pp. 291-322). Washington, DC: American Psychological Association. Muthen, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran. Psychological Methods, 8, 369-377. Muthen, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage. Muthen, B. (2006). Should substance use disorders be considered as categorical or dimensional? Addiction, 101, 6-16. Muthen, B., & Asparouhov, T. (2008). Growth mixture modeling: Analysis with non-Gaussian random effects. Longitudinal Data Analysis, 143-165. Muthen, B., Brown, C. H., Hunter, A., Cook, I. A., & Leuchter, A. F. (2011). General approaches to analysis of course: Applying growth mixture modeling to randomized trials of depression medication. In P.E. Shrout (ed.), Causality and Psychopathology: Finding the determinants of disorders and their cures (pp. 159-178). New York, NY: Oxford University Press. Muthen, B., & Muthen, L. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891. Muthen, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55(2), 463-469. Muthen, L. K., & Muthen, B. O. (2010). Mplus User’s Guide. Sixth Edition. Los Angeles, CA: Muthen & Muthen Nagin, D. S. (1999). Analyzing developmental trajectories: a semiparametric, group-based approach. Psychological methods, 4(2), 139. Nagin, D. S., & Tremblay, R. E. (2001). Parental and early childhood predictors of persistent physical aggression in boys from kindergarten to high school. Archives of General Psychiatry, 58(4), 389. Nylund, K. L., Asparouhov, T., & Muthen, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535-569. Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., & Harrington, H. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20(02), 673-716. Raudenbush, S. W. (2001). Comparing personal trajectories and drawing causal inferences from longitudinal data. Annual Review of Psychology, 52(1), 501-525. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods (2nd ed.). Thousand Oaks, CA: Sage Rindskopf, D. (2003). Mixture or homogeneous? Comment on Bauer and Curran (2003). Psychological Methods, 8, 364–368. Rovine, M. J., & Molenaar, P. C. M. (2001). A structural equations modeling approach to the general linear mixed model. In L. M. Collins & A. G. Sayer (Eds.), New Methods for the Analysis of change (pp. 67-98). Washington, DC: American Psychological Association. Small, B. J., & Backman, L. (2007). Longitudinal trajectories of cognitive change in preclinical Alzheimers disease: A growth mixture modeling analysis. Cortex, 43(7), 826-834. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. London, England: Sage Tucker, L. R. (1966). Learning theory and multivariate experiment: Illustration by determination of parameters of generalized learning curves. In R. B. Cattell (Ed.), The Handbook of Multivariate Experimental Psychology (pp. 476-501). Chicago, IL: Rand McNally. Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116(2), 363-381. |
熱門期刊下載排行