資料採礦模式於學校整併指標之應用與評估

Application and Assessment of Data Mining Models in School Consolidation Indicators

林松柏
Sung-Po Lin

Doi:10.3966/181665042015091103001


所屬期刊: 第11卷第3期 「教育政策與制度」
主編:淡江大學教育政策與領導研究所教授
吳明清
系統編號: vol042_01
主題: 教育政策與制度
出版年份: 2015
作者: 林松柏
作者(英文): Sung-Po Lin
論文名稱: 資料採礦模式於學校整併指標之應用與評估
論文名稱(英文): Application and Assessment of Data Mining Models in School Consolidation Indicators
共同作者:
最高學歷:
校院名稱:
系所名稱:
語文別:
論文頁數: 30
中文關鍵字: 大數據;資料採礦;學校整併
英文關鍵字: big data;data mining;school consolidation
服務單位: 國立暨南國際大學教育政策與行政學系助理教授
稿件字數: 19981
作者專長: 教育政策分析、教育評鑑、教育測驗與評量、計量研究方法、終身學習
投稿日期: 2015/2/4
論文下載: pdf檔案icon
摘要(中文): 因應少子女化的衝擊,小型學校進行整併或裁撤已是必要策略之一,教育部遂於 2006 年 2 月 14 日提出小型學校發展評估指標,供各縣市政府參考運用。在運用指標進行分析時,若能有大數據的思維,並發展適切的資料採礦模式,將有助於各縣市政府進行學校整併。本研究的研究目的即探討如何基於大數據思維整合不同資料庫,將資料採礦技術運用於教育統計資料中,以利學校整併工作的執行。本研究依據教育部小型學校發展評估指標,整合現行不同資料庫針對個案縣市轄區內所有國民小學進行相關資料蒐集。本研究所運用的資料採礦模式有分類與迴歸樹、類神經網路、決策樹、支援向量機、貝氏網路等五種,研究結果發現五種模式具有正確率高與便於解讀的優點。依據研究結果,本研究提出學校整併應整合教育、人口與地理資料庫,並且應採實徵資料評估與實地訪察兩階段評估,而縣市政府或學校能夠運用本研究發展的操作型定義釐清有整併需求的學校名單或了解學校本身的相對位置。
摘要(英文): Because of tendency of declining birthrate, it is seen as necessary to consolidate or abolish the small schools. The Ministry of Education then provided “Small School Development Evaluation Indicators” to county and city governments in February 2006. In depth analysis of the indicator data based on Big Data to develop data mining analysis model and operational definition of each indicator, is helpful for county and city governments consolidating small schools. This article aims to study how to integrate different databases based on Big Data thinking, and use data mining methods in education statistics, to facilitate school consolidation. According to the Ministry of Education indicators, this article integrated governance databases to collect the related data of all elementary schools. This article used supervised models, including Classification and Regression Tree, Neural Network, Decision Tree, Support Vector Machine, and Bayesian Network. The results reveal that five models have higher correction rate and are easy to read. According to the results, when consolidating small schools, education, population and geographic databases should be integrated. Besides, empirical data assessment and supervision should be adopted. The governance institution and each school can adopt operational definition of each indicator to calculate the relative position.
參考文獻: 中華民國監察院(2012)。「國中小學廢併校後之閒置校舍活化成效與檢討」專案調查研究。取自https://www.cy.gov.tw/AP_HOME/Op_Upload/eDoc/調查報告/102/1020001081010833345.pdf
牛田一雄、高井勉、木暮大輔(1996)。資料採礦利用Clementine使用手冊。臺北市:鼎茂。
吳政達(2006)。少子化趨勢下國民中小學學校經濟規模政策之研究。教育政策論壇,9(1),23-41。
宋吉永(2013)。Big data:讓你看見真實欲望。陳姿穎(譯)。臺北市:精誠資訊。
林雍智(2006)。日本實施中小學校整併的情形對我國之啟示。教育行政與評鑑學刊,1,135-157。
邱宏彬、許依宸(2011)。資料採礦在學生流失偵測上之應用。資訊管理研究,11,83-99。
城田真琴(2013)。Big data大數據的獲利模式。鐘慧真與梁世英(譯)。臺北市:經濟新潮社。
胡世忠(2013)。雲端時代的殺手級應用:Big data海量資料分析。臺北市:天下雜誌。
翁秉逸、謝明哲(2013,10月)。應用資料採礦技術於中途輟學線上預警系統之實現。TANET 2013臺灣網際網路研討會,教育部資訊及科技教育司,臺中市。
張云濤、龔玲(2007)。資料探勘原理與技術:Data mining、AI、Algorithm。臺中市:五南。
張志明(2012)。實施國中小裁併校必須考量的政策思維。臺灣教育評論月刊,1(14),5-6。
張鈿富、林松柏(2012)。資料採礦分析PISA閱讀素養之影響因素。教育政策論壇,15(4),95-128。
曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005)。資料探勘。臺北市:旗標。
廖述賢、溫志皓(2011)。資料探勘理論與應用:以IBM SPSS Modeler為範例。新北市:博碩文化。
劉世閔(2012)。績效與平等之風雲又起:小校裁併之我見。臺灣教育評論月刊,1(14),1-4。
謝邦昌(主編)(2005)。資料採礦與商業智慧:SQL server 2005。臺北市:鼎茂。
Adams, J. E., Jr., & Foster, E. M. (2002). District size and state educational costs: Should consolidation follow school finance reform? Journal of Education Finance, 27(3), 833-855.
Bard, J., Gardener, C., & Wieland, R. (2006). Rural school consolidation: History, research summary, conclusions, and recommendations. The Rural Educator, 27(2), 40-48.
Chrysostomou, K., Chen, S. Y., & Liu, X. (2009). Investigation of users’ preferences in interactive multimedia learning systems: A data mining approach. Interactive Learning Environments, 17(2), 151-163.
Cohen, F. (2003). Mining data to improve teaching. Educational Leadership, 60(8), 53-56.
Fowler, F. J., Jr. (2002). Survey research methods (3rd ed.). Thousand Oaks, CA: Sage.
Franklin, D., & Andrews, J. (2012). Mega change: The world in 2050. Hoboken, NJ: John Wiley & Sons.
Hamalainen, W., & Vinni, M. (2011). Classifiers for educational data mining. In C. Romero, S. Ventura, M. Pechenizkiy, & R. S. Baker, (Eds.), Handbook of educational data mining (pp. 57-74). Boca Raton, FL: CRC.
Hung, J.-L., & Crooks, S. M. (2009). Examining online learning patterns with data mining techniques in peer-moderated and teacher-moderated courses. Journal of Educational Computing Research, 40(2), 183-210.
Kennedy, L., Lee, Y., Roy, van B., Reed, C. D., & Lippman, R. P. (1997). Solving data mining problems through pattern recognition. Upper Saddle River, NJ: Prentice-Hall.
Leacha, J., Paynea, A. A., & Chan, S. (2010). The effects of school board consolidation and financing on student performance. Economics of Education Review, 29, 1034-1046.
Loshin, D. (2013). Big data analytics: From strategic planning to enterprise integration with tools, techniques, NoSQL, and graph. Waltham, MA: Morgan Kaufmann.
Luan, J., Zhao, C.-M., & Hayek, J. C. (2009). Using a data mining approach to develop a student engagement-based institutional typology. IR Applications, 18. Retrieved from http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED504332
Masunaga, H., & Lewis, T. (2011). Self-perceived dispositions that predict challenges during student teaching: A data mining analysis. Issues in Teacher Education, 20(1), 35-49.
Mayer-Schonberger, V, & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. New York, NY: Houghton Mifflin Harcourt.
Niemi, D., & Gitin, E. (2012, October). Using big data to predict student dropouts: Technology affordances for research. Paper presented at the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in Digital Age (CELDA), Madrid, Spain.
Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), 9-20.
Silver, N. (2012). The signal and the noise: Why so many predictions fail-but some dont. New York, NY: Penguin.
Surface, J. (2011). Assessing the impact of twenty-first century rural school consolidation. International Journal of Educational Leadership Preparation, 6(2), 1-13.
Vandamme, J.-P., Meskens, N., & Superby, J.-F. (2007). Predicting academic performance by data mining methods. Education Economics, 15(4), 405-419.
West, D. M. (2012). Big data for education: Data mining, data analytics, and web dashboards. Retrieved from http://www.brookings.edu/research/papers/2012/09/04-education-technology-west
Wrobel, S. L. (2010). A phenomenological study of rural school consolidation. Journal of Research in Rural Education (Online), 25(2), 1-19.
Zimmer, T., DeBoer, L., & Hirth, M. (2009). Examining economies of scale in school consolidation: Assessment of Indiana school districts. Journal of Education Finance, 35(2), 103-127.